$$\mathrm {L}^p$$-extrapolation of non-local operators: Maximal regularity of elliptic integrodifferential operators with measurable coefficients
نویسندگان
چکیده
منابع مشابه
The Regularity Problem for Second Order Elliptic Operators with Complex-valued Bounded Measurable Coefficients
The present paper establishes a certain duality between the Dirichlet and Regularity problems for elliptic operators with t-independent complex bounded measurable coefficients (t being the transversal direction to the boundary). To be precise, we show that the Dirichlet boundary value problem is solvable in Lp ′ , subject to the square function and non-tangential maximal function estimates, if ...
متن کاملSubmajorization inequalities associated with $tau$-measurable operators
The aim of this note is to study the submajorization inequalities for $tau$-measurable operators in a semi-finite von Neumann algebra on a Hilbert space with a normal faithful semi-finite trace $tau$. The submajorization inequalities generalize some results due to Zhang, Furuichi and Lin, etc..
متن کاملThe spectral properties of differential operators with matrix coefficients on elliptic systems with boundary conditions
Let $$(Lv)(t)=sum^{n} _{i,j=1} (-1)^{j} d_{j} left( s^{2alpha}(t) b_{ij}(t) mu(t) d_{i}v(t)right),$$ be a non-selfadjoint differential operator on the Hilbert space $L_{2}(Omega)$ with Dirichlet-type boundary conditions. In continuing of papers [10-12], let the conditions made on the operator $ L$ be sufficiently more general than [11] and [12] as defined in Section $1$. In this paper, we estim...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Evolution Equations
سال: 2020
ISSN: 1424-3199,1424-3202
DOI: 10.1007/s00028-020-00609-7